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Abstract—The ventricular system inside the brain is known to
enlarge and change shape given conditions such as Alzheimer’s
disease. This change in shape may provide a way to assess
the level of cognitive impairment of a patient, as well as
other intellectual characteristics. This paper describes the use
of trees to represent the 3D space containing the third and
lateral ventricles, and classification of these trees using frequent
subgraph mining and support vector machines. Level of cognitive
impairment and years of education are shown to be predictable
given a tree representation of the shape of the third and lateral
ventricles, demonstrating that the shape of the ventricular system
correlates with these attributes. These results were generated
using a cross-sectional collection of 416 MR images of subjects
ranging in age from 18 to 96 years, including 100 subjects
diagnosed with Alzheimer’s disease.

I. INTRODUCTION

Many personality traits and talents are reflected in the
physical structure of the brain. Likewise, events throughout
a person’s life can also leave a physical mark on the brain,
whether head impacts, drug use, high levels of cognitive use
or disuse, high blood pressure, stress, or disease. Many of
these physical changes can be observed in an MR image of
the brain.

Human involvement in analysis of MR images is a useful
diagnostic tool in many cases. However, applying automation
to analysis of medical image data allows examination of
larger datasets at lesser cost in terms of human time. This
reduced cost enables searching for patterns for which adequate
justification cannot be found for a time-intensive manual
perusal of the data. [1] describes a number of methods which
have been applied to automatic brain image analysis.

Analyzing the shape of structures in the brain can be a
particular challenge due to lack of clear, defined boundaries
around many of them, as noted in [2]. However, the ventricular
system provides a sharp contrast to the rest of the brain,
appearing dark in color in MR images due to the cerebrospinal
fluid inside the ventricles. This provides a natural target for
automatic analysis.

The volume of the ventricular system has been shown to
increase with the progression of Alzheimer’s disease [2]. As
such, given a large number of MR images showing the ventric-
ular system, it may be possible to develop an automatic system
to determine with some degree of accuracy which images are
from patients displaying some level of cognitive impairment.
Such a system could use the shape of the ventricular system
as well as simple volume in order to form a more accurate
representation of the difference between categories.

Given a classifier which can, given two sets of MR images,
form a method to distinguish between them based on ven-
tricular shape, it is possible to test if a particular intellectual
characteristic correlates with ventricle shape. A reasonable
test of such a system is to determine if it can differentiate
between cognitively-impaired and healthy individuals, because
ventricular volume is known to increase given progression
of Alzheimer’s disease [2]. See Figure 1 for an example of
ventricular enlargement.

This paper describes a method of creating a tree representing
the 3D shape of the third and lateral ventricles, by both the
tree structure and node and edge labels. Trees created by this
method are then classified by finding frequent subtrees which
are present only in trees derived from cognitively-impaired or
healthy brains. Feature vectors are constructed for each image
by presence or absence of the frequent subtrees, and the image
is classified by a support vector machine operating on these
feature vectors. The hypothesis that such a system should be
capable of distinguishing with better than random accuracy
between cognitively-impaired and healthy individuals is tested
and found to be true, with an accuracy of 72% when mildly
impaired individuals (CDR 0.5) are excluded from the test,
and 66.3% when they are included.

The system is then used to find a correlation between
ventricular shape and level of education, demonstrating 77.2%
accuracy classifying highly-educated individuals vs. individ-
uals with no college education. This demonstrates that the
system presented in this paper is capable of general-purpose
classification provided some physical pattern exists which can
be found in the shape of the third and lateral ventricles. This
validates the shape-recognition algorithm, indicating it may be
suitable as a component of a more general MRI classification
system.

II. PREVIOUS WORK

A. Graph Classification
Graph classification generally relies on either direct compar-

ison between graphs, or by examining frequent substructures
within a graph. In [3], the Subdue system is used to distinguish
between two classes of graphs by finding a substructure
common to most positive examples but few negative examples.
It is capable of using multiple subgraphs in order to cover a
set of positive examples which may not all have exactly the
same substructure in common, but yet some set of defining
characteristics does exist.

It is also possible to discover substructures using a frequent
subgraph miner, and then use them to create a feature vector to
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Fig. 1. Left: Saggital images from healthy (CDR 0) brains. Right: Images from patients exhibiting CDR 2. Note enlarged third ventricle, and overall reduced
brain volume.

describe a graph. Deshpande et al. use this approach to classify
chemical compounds in [4]. Using feature vectors in this
manner allows use of more common data mining techniques
for classification.

Besides reliance on substructures, it is possible to compare
graphs directly. In [5] an SVM kernel is created which directly
compares graphs. This avoids costly subgraph isomorphism
calculations and can in some circumstances improve accuracy.
However, the running time of the graph kernel is long,
particularly with large graphs, and it proved computationally
infeasible on the graphs used in this paper.

In [6], we test both approaches plus a nearest neighbor
approach in an ensemble to classify graphs representing move-
ments of inhabitants of an apartment, with the result that
although there is some degree of overlap between the methods,
both may also classify certain examples correctly when the
other does not.

B. 3D Shape Representation by Graphs

3D graph-based object classification has been done, as in
[7], by forming a graph consisting of derived attributes. For
example, in [7], Joshi and Chang use shape features such as
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edges, etc. to form a graph-based representation of machined
features. Similar methods in 2D are also used, for example
in [8]. 3D classification is an extension of 2D classification,
which has been done in similar ways to that in this paper, for
example by Elsayed et al. in [9].

C. Classification of MRI and fMRI images

In [9], Elsayed et al. perform analysis on the shape of the
corpus callosum in order to classify brain scans of musicians
vs. non-musicians. As a preliminary step, image algorithms
are applied to increase the contrast of the corpus callosum,
a bounding box is determined for the corpus callosum, and
the image is cropped accordingly. After the image is cropped,
it is converted into a quad-tree by separating the image
into 4 quadrants, then recursively subdividing each quadrant
until the image to be subdivided is sufficiently homogeneous
(95% uniform in color). Each division forms a branch in the
quad-tree, and each non-subdivided image becomes a leaf.
This tree then represents the shape of the corpus callosum.
Frequent subtrees are found in the set of quad-trees, weighted
to give nodes near the root greater weight. A feature vector is
produced based on the presence or absence of each frequent
subtree and classification is performed using the C4.5 decision
tree algorithm. The result is a best classification accuracy
of 95.28%, depending on the support threshold for frequent
subtrees. This work was extended to include time-series data
classification in [10]

In [11], Mitchell et al. use each voxel as a feature, and
classify thoughts using machine learning techniques. This is
a different though related problem, because this approach is
tailored for fMRI data, which is a time sequence of activation,
rather than only a static (structural) image of the brain.
Feature selection is used to select voxels which are particularly
predictive for each task. The total size of the dataset is small,
but machine learning is nevertheless demonstrated.

III. PUBLICLY AVAILABLE MRI DATA

Data is available from OASIS [12]. This is a dataset consist-
ing of over 400 MR images, some of individuals with varying
levels of cognitive impairment. They are labeled according to
the degree of cognitive impairment due to Alzheimer’s disease.
The data is in the Mayo Clinic Analyze 7.5 format 1. The Nipy
library can be used to access this data from Python code [13].

IV. GRAPH-BASED SHAPE CLASSIFICATION

A. Finding the Extent of the Third Ventricle

The third ventricle is surrounded primarily by white matter,
which forms an obvious contrast to the cerebrospinal fluid in-
side the ventricle itself. Automatically detecting the ventricles
can be done by selecting the portion of the 3D images which
is dark in color, or has a low intensity value. This leads to an
algorithm expanding the selected area in 3D space, as shown
in algorithm 1.

1http://www.grahamwideman.com/gw/brain/analyze/formatdoc.htm

Fig. 2. Third and lateral ventricles, post-discovery. From the image, it appears
that the full left lateral ventricle may not have been discovered. This is not a
problem provided the bounding box containing the third and lateral ventricles
is correct. Also, many of the images exhibit asymmetry between the lateral
ventricles. The approximate ventricular volume can be obtained based on the
number of voxels in the ventricles.

Algorithm 1: Expansion in 3D algorithm
Input: Point p inside III ventricle, intensity threshold Ti
Output: Set of points inside III ventricle
(1) P ← [p]
(2) C ← Neighbors of p
(3) foreach c ∈ C
(4) if c 6∈ P and intensity(c) ≤ Ti
(5) Add c to P
(6) Add Neighbors of c to C
(7) return P

The third ventricle is connected to the rest of the ventricular
system, and to the spinal canal. The 3D expansion algorithm
cannot be allowed to leave the ventricular system and expand
to select the spinal canal, which will reach the edge of the MR
image and lead to selection of 3D space outside the brain. In
general, small passageways in the brain, despite containing
CSF, are of higher intensity than the space inside the third
ventricle, and therefore some threshold generally exists which
will allow the 3D expansion algorithm to select the entire third
ventricle and both lateral ventricles without expanding beyond
it.

Additionally, the selected area must not extend too far from
a known point in the ventricles. In our testing, most images
were found to have a suitable threshold. This does require a



4

known point inside the ventricles. This was provided by human
input, but further work could enable automation of this step as
well. A user interface was created to allow a point within the
ventricles to be specified in only two mouse clicks per image.
Marking a point inside one of the lateral ventricles was found
to be fastest.

If the image of the brain was a perfect representation, there
would be nothing to stop the 3D expansion algorithm from
following the cerebral aqueduct completely out of the brain,
however in practice MR images record the cerebral aqueduct
as lighter than the rest of the ventricular system, providing
a stopping point for the algorithm. However, with too low
of intensity threshold, the expansion algorithm will not move
from one lateral ventricle to the other, stopping either before
reaching the third ventricle, or before entering the other lateral
ventricle.

Selection of an appropriate intensity threshold was done
by automatic trial and error. Progressively higher intensity
thresholds are tested until the discovered area is:

1) Balanced evenly on the left and right sides of the brain
2) Of suitable size to potentially include both lateral ven-

tricles
This process can be completed on the entire OASIS dataset

using 4 threads on an Intel Q6600 in about two days. Some
variance in balance must be allowed given the variability of
the human brain. Figure 2 gives an example of the third and
lateral ventricles after selection.

B. Derivative of Intensity to Highlight Boundaries

In some cases, appropriate intensity threshold cannot be
found without image enhancement. In order to amplify the
contrast between white matter and the interior of the third
ventricle, edges were highlighted by changing the intensity
value to the maximum difference in intensity between a voxel
and it’s 6 non-diagonal neighbors. This is equivalent to the
rate of change in intensity over change in the x, y, or z
direction. Using this technique, a total of 387 out of the
416 OASIS images were found to have a suitable intensity
threshold, including 27 of 30 images involving a CDR of
1.0 or higher. Figure 3 illustrates the results of this process.
The entire recoloration takes around 20 minutes to complete,
single-threaded, on an Intel Q6600.

C. Oct-Tree Graph Representation

Once the entire third ventricle is selected, the extent of it
can be determined in X, Y, and Z directions. The volume is
also determined at this point, although at present this value is
not used for classification. The reference points established by
the edges of the ventricular system are used to generate the
tree. This avoids any particular dependence on voxels, similar
to the “anchor points” described by Megalooikonomou et al.
in [1].

The area containing the third ventricle is repeatedly sub-
divided until either the intensity is sufficiently homogeneous
over the entire subdivision, or the depth limit for the tree is
reached. Subdivision is always into 8 parts, with all parts of

equal size forming a 2x2x2 grid. A tree is constructed by
representing each subdivision. Reaching a stopping condition
causes a leaf in the tree.

D. Labeling

The tree must incorporate spatial information, the graph
must include which physical location a branch corresponds
to. This is done using edge labels. Also, the condition under
which leaves were formed must be recorded (depth limitation,
homogeneous dark area, homogeneous white area). Nodes are
labeled according to the following scheme:

root indicates the root node, i.e. the box representing the
extent of the ventricles

U indicates a node which branches into 8 subdivisions
I indicates a leaf due to depth limitation
W indicates a leaf due to homogeneous white color
D indicates a leaf due to homogeneous dark color
Edges are labeled from 0 through 7 depending on which

subdivision they represent. Specifically:
• Edges 0-3 indicate subdivisions from the right half of the

box
• 4-7 are from the left half
• 0, 1, 4, and 5 are from the inferior (lower) half
• 2, 3, 6, and 7 are from the superior (upper) half
• 0, 2, 4, and 6 are from the rostral (rear) half
• 1, 3, 5, and 7 are from the caudal (front) half
This allows a subgraph to indicate that a particular area must

be dark, light, or indeterminate. As such, they can completely
represent shape given an adequate number of nodes.

Adjusting the tree depth limit and maximum allowable
intensity variance, changes the size of the generated tree. A
greater number of nodes provides a more accurate shape rep-
resentation, but increases computational time. Many common
graph operations scale badly relative to the number of nodes,
making this a particularly important parameter.

V. CLASSIFICATION OF GRAPHS

Finding a set of subgraphs can be done using a frequent
subgraph miner such as Gaston [14] or Gspan [15]. These will,
given a set of graph transactions, return all subgraphs more
frequent than a given support threshold. In order to represent
each of two categories, the training set can be split between
negative and positive examples, and the subgraph miner can
be run on each of the resulting sets. This was done in [6]
for frequent subgraph classification. Splitting the training set
in this manner allows subgraphs which are distinct to one
classification or the other to be discovered.

Given that trees representing the 3D shape of the ventricular
system are all somewhat similar, there is a large amount of
overlap between trees representing ventricles from highly-
impaired individuals and those from healthy individuals. Also,
because a large amount of similarity exists within each cat-
egory, many frequent subgraphs can be found. Attempts to
use Gaston to find useful frequent subgraphs resulted in an
overwhelming flood of subgraphs with no particular relevance
for classification. Using a set of 27 trees, 12 gb of frequent
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Fig. 3. 3D view showing saggital, coronal, and transverse sections through the third ventricle. Left: Image with intensity values as provided in the data.
Right: Intensity values calculated by the difference in intensity between each voxel and 6 non-diagonal neighbors.

subgraphs are found even if the support threshold was high
enough to require all 27 trees to contain every subgraph.

Subdue [3] attempts to find subgraphs which are frequent
in positive examples, but not negative examples. This is an
essential capability for classification of trees derived from
the shape of the third ventricle, because it generates a small
but relevant set of frequent subgraphs. In order to generate a
more diverse set of subgraphs, Subdue was run twice, once
with the labels reversed, to find subgraphs which are frequent
in negative examples but not positive examples. Subdue is
also capable of running in multiple iterations, to find a set of
subgraphs which were not covered by frequent subgraphs dis-
covered in earlier iterations. This capability was used provided
computational time was available. Some experiments were
performed on a cluster with a 24-hour maximum walltime
limit, which restricted the maximum time Subdue could be
allowed to run. An MPI version of Subdue exists which may
ease this requirement somewhat, but this was not used for the
present work.

Once a set of subgraph features is obtained, a binary feature
vector is created for each example based on the presence
or absence of each subgraph. Length is adjustable based on
the number of subgraph featuress considered. For most tests,
length was between 6 and 100. Subgraphs can be pruned
by removing subgraphs which are unlikely to be generally
useful, as defined by those not containing a root node. Such
substructures appear useful in the training set, but may not
apply in general. All substructures not containing the root
node are eliminated, because these do not contain any relevant

spacial information (i.e. could occur in any part of the graph).
This does prevent consideration of local features which are
meaningful regardless of location.

Subdue includes a utility called ”cvtest” which can perform
classification, although it does not support classification based
on subgraphs obtained by reversing the data labels. This utility
was used for initial tests. However, it performs subgraph
isomorphism to determine which subgraphs are contained in
each test example, which is an NP-hard operation and proved
very slow on the large (average 2167-node) trees. An attempt
to quantify the time required was abandoned after several days.

Given that the non-root-containing substructures have been
eliminated, there is no need for an NP-hard isomorphism test.
Instead, starting at the root node in the subgraph, all branches
are matched to branches in the potential supergraph. Assuming
all match, the process is repeated recursively for each branch,
avoiding backtracking back up the tree. This allows efficient
isomorphism testing. Algorithm 2 describes this in detail. The
final classification system was very fast except for substructure
discovery, can incorporate an arbitrary number of subgraphs
as features, and allows for additional features to be added.

Once a feature vector is constructed, many common ma-
chine learning methods can be used. In this work, a Support
Vector Machine with an RBF kernel was chosen, as described
in [16]. The specific SVM implementation was libsvm [17].
Classification accuracy was found to depend more on the
subgraph discovery step than on the particular method of
feature vector classification.

An example of a frequent subtree is given in figure 4.
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Algorithm 2: Fast test to determine if one tree contains
another, exploiting the fact that both trees contain only one
root
Input: Candidate supergraph G with root RG and visited
nodes PG (PG initially empty), subgraph s with root Rs and
visited nodes Ps (Ps initially empty)
Output: true if s is a subgraph of G
INTREE(G, RG, PG, s, Rs, Ps)
(1) NG ← Neighbors of RG not in PG

(2) Ns ← Neighbors of Rs not in Ps

(3) foreach n ∈ Ns

(4) if No match for n in NG

(5) return false
(6) foreach n ∈ Ns

(7) nG ← match for n in G
(8) if true 6= intree(G, nG, PG + nG, s, n, Ps + n)
(9) return false
(10)return true

Fig. 4. Frequent subtree from the initial testing set (54 individuals, 27 CDR 1
or higher, 27 CDR 0). This tree appears in 25 positive (CDR ≥ 1) examples,
and only 5 negative (CDR = 0) examples. Edge 6 from the root leads to
a node with two children, representing the left superior portion of the left
superior rostral subdivision. Uneven coloration of this area indicates that it is
not firmly outside the ventricular system.

VI. RESULTS

In the set of trees created to represent images in the OASIS,
trees were limited to a maximum depth of 5, giving a theoret-
ical maximum graph size of 85 nodes, or 32,768. The average
case was 2,167 nodes. The maximum tree size was well below
the theoretical peak at 3,913 nodes. Minimum graph size
was 169 nodes. This proved to be a reasonable balance of
computational feasibility and accurate representation of the
ventricles. Once an appropriate set of graphs was generated,
it was not modified for the remainder of the tests.

The initial dataset size was 54, evenly split between healthy
individuals and individuals with a CDR of 1 or greater. A

complete test using 10-fold cross-validation can be completed
on this dataset in about 24 hours, using a 4-core Intel Q6600
CPU and multithreading by performing each fold of cross-
validation in its own thread. Results on this dataset indicate
an overall accuracy of 72% using 10-fold cross-validation,
and 88% accuracy testing on the training set. This dataset
omits individuals with CDR 0.5, which is expected to improve
accuracy.

Cross-validation is expected to produce lower accuracy than
testing on the training set. In this case, the extra error is
due to the subgraph mining phase of classification. This was
determined by creating a set of feature vectors providing the
subgraph miner with complete access to the dataset. Then,
accuracy of a Support Vector Machine was obtained over
the set of feature vectors using 10-fold cross-validation. This
produced 88% accuracy, equivalent to that produced by testing
on the training set. A Naive Bayes classifier used on the feature
vectors generated a similar result. If appropriate features can
be determined by frequent subgraph mining, the machine
learning task is then relatively easy.

In order to include individuals with CDR 0.5, a dataset con-
sisting of 83 healthy individuals and 83 individuals with CDR
of at least 0.5 was constructed. 10-fold cross-validation test on
this dataset can be completed in under 24 hours using 10 Intel
Xenon processors running at 2.3 ghz, running each fold of
cross-validation on its own processor. Overall accuracy was
66.3%, indicating that inclusion of individuals displaying a
lower level of cognitive impairment does increase the difficulty
of the learning task, but at least some degree of accuracy is
still possible. Given the flexibility of the human brain, it is
possible that one could exhibit adequate physical symptoms
more strongly than an evaluation of cognitive functioning
would indicate, making the slightly-impaired case much more
difficult.

Other studies have focused on assessing the progression of
Alzheimer’s disease, rather than initial assessment of it [2].
There does not appear to be a benchmark classification system
to compare ours to, and as such, we have not included results
from any other classification system.

A. Level of Education

Given results such as [2], it was expected that some correla-
tion between ventricle shape and level of cognitive impairment
exists. However, in addition to CDR, the OASIS dataset
contains other parameters, one of which is level of education.
Level of education is given as integers from 0 through 5
representing the number of years of education the individual
has received [12], with 181 of the total 416 individuals at level
0.

In order to test the classifier, a dataset was constructed
using as one category level 0 individuals, and as the other
individuals with level 4 or higher. The dataset was balanced
with 79 examples of each category. Overall accuracy using
10-fold cross-validation was 77.2%. The accuracy proved
insensitive to adjustments in the RBF kernel parameters C and
γ. Accuracy decreased if the parameters were set very high in
order to overfit the data, however for all reasonable settings
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Fig. 5. Frequent subtree from the education test set. This tree is present in
42 examples with individuals having 4 or more years of college education,
but only 7 examples of individuals with no college education. Note that the
right inferior caudal subdivision is found to be white. This may indicate small
overall ventricular size, because if the ventricles were large, this area would
not be completely outside the ventricular system.

accuracy was unchanged. This emphasizes the result that
subgraph discovery is more important to accurate classification
than the method used to classify feature vectors. An example
frequent subtree is given in figure 5.

From this, it may be concluded that there is a correlation
between the shape of the third and lateral ventricles and the
level of education a person has received, at least in the tested
images from the OASIS database. This does not imply any
particular causation, merely that the correlation exists to such
an extent that a computer program can use the shape of the
ventricles to distinguish between highly-educated people and
those with no college education nearly 4 out of every 5 times.

There are examples in the literature regarding the effect
of education on the brain. For example, in [18], it is noted
that years of education results in higher performance on
intelligence tests into old age. It is also discovered that al-
though higher initial performance is observed, verbal memory
performance may decline faster on well-educated subjects.

In [19] more rapid cognitive decline due to Alzheimer’s
disease on highly-educated test subjects is observed. A pecu-
liarity of the OASIS dataset is that all cognitively-impaired
individuals had at least a year of higher education. The total
number of subjects with at least 1 year of higher education is
235, of which 100 have CDR ≥ 0.5.

We are not aware of any previous work that specifically
correlates ventricular size or shape to level of education.

VII. FUTURE WORK

The graph-based 3D shape classification described in this
paper is intended to be readily incorporated into a more
expansive graph of the brain. A number of methods presently
exist to form a graph representing neural structure.

Eguı́luz et al. use functional MRI activation levels in order
to link areas of the brain with correlated activation in [20].
This produces a graph where two nodes are linked if the areas
they represent activate at the same times. This is considered
to be a functional brain network [21].

A different approach is taken by Hagmann et al. in [22].
A graph is formed of the structure of the brain, indicating
which neural component is connected to which other neural
component by analysis of white matter. This forms a structural
brain network [21].

Both structural and functional networks could be suitable
for graph-based classification as done in this paper. However,
the state of the brain could be more completely described by
incorporating shape-based information into the graph. Using
trees to represent the 3D shape of neural components is a
natural method for this. The root of the shape tree for a neural
structure can be linked to the node representing that structure.
A frequent subgraph based classifier could directly process
the resulting graph. Such a graph would incorporate far more
information than the graphs of the ventricles, and the shape
of the graph is likely to correlate with more conditions. In
essence, this would produce a more generally useful version
of the system described in this paper.

Besides providing an automatic method of distinguishing
between categories of brain images, such a system could
provide a insight into what physical differences are important
in recognizing the condition. Frequent subgraphs useful to
classification will incorporate nodes from relevant structures,
but not structures which have no bearing on the eventual
classification.

A. Robustness of the Method

The ventricle discovery algorithm was able to process 387
out of 416 images. Of the remainder, most had severely
enlarged ventricles which resulted in discovery of the cerebral
aquaduct and fourth ventricle. A few had small ventricular
systems, with no clear passage between the third ventricle
and the lateral ventricles. In either case, manual analysis
would readily reveal the state of the ventricular system.
A replacement ventricle discovery system based on image
analysis techniques may be able to improve upon this.

VIII. CONCLUSION

This work was intended to validate the hypothesis that a
graph-based representation of the 3D shape of the third and
lateral ventricle would enable a graph classifier to distinguish
between MR images of brains in patients with cognitive
impairment due to Alzheimer’s disease and healthy patients.
It can do that to some degree, even when mildly-impaired
patients are included in the dataset. The method also proved
suitable to distinguish highly-educated individuals from those
with no college education. This demonstrates the versatility of
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the solution, and also provides the interesting result that at least
in the OASIS dataset, there is a significant difference in the
shape of the third and lateral ventricles between these groups.
We are aware of no previous study correlating ventricular
size with level of education, although the role of education
in cognitive decline has been previously studied.

Given this, a more general system incorporating more neural
structures than just the ventricular system is likely to be of at
least some utility in detecting a variety of neural conditions,
and also of finding the physical differences which make them
distinguishable. The graph-based shape recognition algorithm
could play a key role in such a system.
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