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Abstract. Activity Recognition in Smart Environments presents a diffi-
cult learning problem. The focus of this paper is a 10-class activity recog-
nition problem using motion sensor events over time involving multiple
residents and non-scripted activities. This paper presents the results of
using three different graph-based approaches to this problem, and com-
pares them to a non-graph SVM approach. The graph-based approaches
are generating feature vectors using frequent subgraphs for classification
by an SVM, an SVM using a graph kernel and nearest neighbor approach
using a graph comparison measure. None demonstrate significantly su-
perior accuracy compared to the non-graph SVM, but all demonstrate
strongly uncorrelated error both against the base SVM and each other.
An ensemble is created using the non-graph SVM, Frequent Subgraph
SVM, Graph Kernel SVM, and Nearest Neighbor. Error is shown to be
highly uncorrelated between these four. This ensemble substantially out-
performs all of the approaches alone. Results are shown for a 10-class
problem arising from smart environments, and a 2-class one-vs-all ver-
sion of the same problem.

1 Introduction

Activity Recognition in Smart Environments is made difficult by the dynamics
of everyday life, particularly in settings involving multiple residents without a
particular set of activities to perform. Activities are seldom performed in ex-
actly the same way from one time to the next, particularly if the resident is
multitasking.

The Washington State University Smarthome project uses motion sensors to
detect activity within a dwelling. These sensors are placed in strategic locations
in order to report relevant information on the inhabitant’s location (Figure 1).

The focus of this paper is a 10-class activity recognition problem arising
from this project. Two residents and a pet lived in the smart environment in
Figure 1. Data from the motion sensors during this period is annotated with 10
different activity labels, for non-overlapping activities. Not all the collected data
is associated with one of these 10 activities, and data annotated with a particular
activity label may contain sensor events not related to the activity in question.
A simple SVM-based classifier (described in Section 3) gives a baseline accuracy



of 68% in determining the correct activity label (using cross-10 validation). In
order to improve upon this baseline accuracy, this paper presents a method
of considering an activity to be a graph, and three graph-based approaches to
improve accuracy. Frequent Subgraph SVM uses presence or absence of a set
of frequent subgraphs to generate a feature vector, which is then classified by a
standard SVM.Graph Kernel SVM uses a kernel which compares graphs directly
based on the number of similar walks. Nearest Neighbor uses a graph comparison
function as a distance measure for a Nearest Neighbor algorithm. Each of these
three graph-based methods, along with the non-graph SVM, are shown to have
uncorrelated error. An ensemble of these three plus the baseline method yields
higher accuracy than any of the methods alone.

The Cairo test environment (Figure 1) consists of a 3-bedroom apartment
with two residents and two types of sensors relevant to this work. Limited area
motion sensors report any motion within an area of about a square meter. Area
motion sensors report any motion within a room. The 10 labeled activities are:
Work in office (46), Take medicine (44), Sleep (102), Night Wandering (67),
Lunch (37), Leave Home (69), Laundry (10), Dinner (42), Breakfast (48), Bed to
Bathroom (30). The number in parenthesis is the number of times the indicated
activity occurs in the dataset. The learning algorithms are provided with motion
sensor data only. Certain other attributes such as time [5] have proven to be
useful as well, but are not considered in this work.

2 Previous Work

Deshpande et al. use feature vectors created from frequent subgraphs to analyze
chemical structures in [7]. Feature vector generation is separated from classifi-
cation, so that any classification algorithm can be used. Deshpande et al. use a
Support Vector Machine. This is similar to the Frequent Subgraph SVM used in
this work.

Graph-based kernels for Support Vector Machines, including the direct prod-
uct kernel used in this paper, are described by Géartner et al. in chapter 11 of
Mining Graph Data [4] and in [8]. It is compared with a cycle-based kernel,
which is quicker to compute but results in reduced accuracy.

Nearest Neighbor algorithms using graph edit distance were used in [11]. This
approach was tested here, but accuracy was not as good as the system of points
defined in Section 3.

Much research has been done on the Smarthome project. Singla et al. [1] use
a Naive Bayes Classifier and Hidden Markov Model to classify activities similar
to the ones in this paper, although generated in a more scripted manner and in
a different living space. They present results on an 8-class problem of a similar
nature. Kim et al. [9] provide a theoretical overview of the task, using Hidden
Markov Models, Conditional Random Field, and Emerging Patterns. Crandall
and Cook use a Naive Bayes Classifier and Hidden Markov Models to distinguish
multiple inhabitants in a smart environment [(]
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Fig. 1. The left two graphs are both of breakfast. Both include many sensor events
outside the usual area of the activity. The rightmost picture is a frequent subgraph
among all breakfast graphs.

The frequent substructures are discovered by Gaston [12], an established fre-
quent subgraph miner for which the source code is available. The Support Vector
Machines use libsvm [2], a freely available Support Vector Machine library.

3 Methods Used

A graph is constructed out of a sequence by considering each sensor to be a
node, and connecting two sensors if they are visited in sequence. Figure 1 shows
examples of graphs generated by such a process. No attempt is made to avoid
connecting sensors which cannot physically be visited in sequence. This becomes
significant when there are two inhabitants performing possibly different activities
at the same time and in different locations within the environment.

Non-Graph SVM. A graph-unaware Support Vector Machine using a Ra-
dial Bias Function kernel was used as a representative of the non-graph-based ap-
proach. Support Vector Machines are a leading classification method [10] [2] [13],
and the Radial Bias Function is a good general-purpose kernel given appropriate
parameters [2] [15]. Input was given as feature vectors containing only the sen-
sors triggered in a particular activity. This is represented as a vector of booleans,
and is equivalent to the node labels in a graph representing the event.

Frequent Subgraph SVM. As indicated in figure 1, a graph of an activity
may contain many extraneous edges. However, some edges will be common in
all graphs from that activity. Figure 1 shows a graph which is common to all
activities classified as “breakfast”. A graph which contains this subgraph is more
likely to represent the activity “breakfast” than one that does not.

A set of frequent subgraphs was found for each of the 10 classes. The presence
or absence of each of these subgraphs in a graph to be classified was used to form
a feature vector. A subgraph was only considered present if all of the edges in it
are represented in the graph to be classified, with the requirement that the node
labels match exactly. This allows the classifier to exploit the fact that particular
activities tend to take place in particular locations.



Once the data is represented as a set of feature vectors, it can be classified
using standard learning algorithms. An SVM with RBF kernel obtained higher
accuracy than a decision tree algorithm, a naive Bayes classifier, and an artificial
neural net.

SVM with Graph Kernel. Support Vector Machines do not interact di-
rectly with the examples they are classifying, but rather use a kernel function
which returns a similarity measure. Training and test examples are given di-
rectly to this kernel function. Therefore, if a kernel function is used which takes
as input a pair of graphs rather than a pair of feature vectors, a support vector
machine can operate on graphs.

A direct product kernel [1] was used to compare graphs. This kernel compares
walks in two graphs to determine similarity. It depends heavily on cross product
between graphs. Consider a graph without edge labels to be represented as a set
of vertexes V', a set of edges E, and a set of node labels « such that G = (V, E, ).
The cross product of two graphs g1 = (V1,F1,1) and go = (Va, Ea, aa), is
defined as g1 X g2 = (Vg, xg25 g, xg), Where

Voisgs = {(v1,02) € Vi x Vot o (v1) = az(v2)}
E91><g2 = {((u17u2)7 (U1,7)2)) € V91><92 X Vl]1><92 : (U1,’U1) € Ey, (u2>v2) € EQ}

Node are labeled for the sensor they represent. Labels do not need to directly
appear in gg, x 4,, given that the following definition of the direct product kernel
depends only on the adjacency matrix of gg, xg,. The direct product kernel is
defined by:

|V91><92‘ oo
l
k(g1,9) = ) [ MnggQ]
1,7=1 =0 ij

Entries in the adjacency matrix My, x4, correspond to the number of walks
between nodes i and j of length /. 10 is used as a computationally-feasible sub-
stitute for co. As noted in [8], graph kernels are computationally expensive. An
O(n?) algorithm is proposed in [14], but was not used for this work. All values
from this kernel were precomputed in parallel using a 296-node cluster.

Nearest Neighbor. Nearest Neighbor algorithms can be adapted to classify
graphs given a suitable distance measure between graphs. This can be provided
in a number of ways. The method used here is to assign “similarity points”. 1
point is given for a matching node or edge in both graphs, and 4 points is lost
for a node which cannot be matched in the other graph. This is intended to
emphasize the location of the event, while still giving some consideration to the
patterns of movement during it. This was converted into a distance by 1/points
if more than three points were obtained, and a maximal distance of 1 otherwise.
Accuracy is not greatly affected by changing the point values.

Some work has been done on using graph edit distance with a nearest neigh-
bor algorithm [11]. This was tried using the “graph match” feature from Sub-
due [3]. This feature gives a “matching cost” which can be adapted to serve as
a distance. This resulted in lower accuracy and required more time to run, and
was not pursued further.



Ensemble. An ensemble of all 4 techniques mentioned above was used to
increase performance beyond any of the methods alone. Weights were assigned
such that a ranking of Frequent Subgraph SVM, the non-graph SVM, Nearest
Neighbor, Graph Kernel SVM was established and no algorithm has more than
twice the weight of any other. This is a ranking from most accurate algorithm
to least.

Il Frequent Subgraph SVM (FSGM)
I non-graph SVM (SVM)

I Graph Kernel SVM (GSVM)

I Nearest Neighbor (NN)
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Fig. 2. Error correlation of all 4 methods. A indicates the number of times the indicated
(by color) method was right and at least one other method was wrong. B indicates the
number of times the indicated method was right, and all other methods were wrong.
Each of the remaining three bars of each color represent the number of times the
method indicated by color was right, when the method indicated by label was wrong.

4 Results

Accuracy obtained for each method, using 10-cross validation on the 10-class
problem, was 66.66 for Subgraph SVM, 66.0 for Non-graph SVM, 58.5 for Graph
SVM, 60.5 for Nearest Neighbor, and 72.5 for an ensemble of the previous four.
The conditions for a successful ensemble are reasonably accurate classifiers and
uncorrelated error. Error correlations are given in Figure 2. There are 53 exam-
ples that no algorithm classifies correctly, 73 correctly classified by exactly one
algorithm, 89 by two, 129 by three, and 151 by all four. On 11 examples, two
algorithms are correct but are outvoted by a higher-weighted pair of algorithms.
The Nearest Neighbor algorithm appears to be the least useful in this compar-
ison, however, when removed from the ensemble the overall accuracy drops to
70.1%.

There are 73 test examples which are only classified correctly by one algo-
rithm. The voting weights used ensure that in all these 73 cases, the answer from
the frequent subgraph SVM is used (this resulted in greater overall performance



than using the graph kernel SVM in this role). This results in 52 misclassifica-
tions, out of 136 misclassifications total. In addition to these 52, there are 11
cases where two algorithms agree on the correct solution, but are outvoted by
the other two algorithms, which have greater weight. Only 53 examples are not
classified correctly by any algorithm. Weighting is irrelevant for 280 examples
correctly classified by at least three algorithms.

Accuracy
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Fig. 3. Comparison on 2-class one-vs-all problems. 3-cross validation used for accuracy.

Class 1 /2|3 |45 |6 |7|8|9]10
Bed to toilet (1) 1.0 {0.98]0.87]0.92|0.98(0.87|0.75|0.97(0.88
Breakfast (2) 1.0 0.72{ 1.0 | 1.0 ]0.75/0.99| 1.0 {0.97|0.98
Dinner (3) 0.98(0.72 0.98]0.99(0.73|0.99]0.99|0.96|0.97
Laundry (4) 0.87] 1.0 |0.98 0.96/0.97|0.97|0.97]0.96| 1.0
Leave home (5) 0.92] 1.0 {0.99/0.97 0.99]0.99| 1.0 |0.99] 1.0
Lunch (6) 0.98(0.75(0.73]0.97(0.99 0.99]0.99(0.96]0.97
Night wandering (7)|0.87]0.99(0.99(0.97]0.99/0.99 0.76]0.96|0.88
Sleep (8) 0.75] 1.0 {0.99/0.97(0.98(0.99|0.76 0.97(0.92
Take medicine (9) [0.97]0.97|0.96(0.96|0.98|0.96/0.96{0.97 0.95
Work in office (10) [0.88(0.98/0.97| 1.0 |0.99]0.97]0.88(0.92|0.94

Fig. 4. Table showing the accuracy in distinguishing one class from another using the
ensemble. The three meals are the most difficult to distinguish from each other, followed
by sleep, night wandering, and bed to toilet. Entries in blue indicate greater than 95%
accuracy. Entries in red indicate accuracy below 80%.

2-Class Comparison. In order to determine which categories are partic-
ularly easy and hard to distinguish from all the others, a one-vs-all 2-class
comparison is used. Accuracy in differentiating each class from all the others
is calculated, as in Figure 3. Note that given the 10-class problem, an algorithm
which simply guesses the majority class in every case (that is, that the example
presented to it is not of the class under consideration) would score 90% accuracy



on average. As such, it is unsurprising that nearly every accuracy calculated was
above 90%.

The classes showing good performance do not correspond with those with
high or low prevalence. Laundry is one of the most successful classes, with the
non-graph algorithm scoring a perfect 100%, and the ensemble missing only a
single example, and is the least frequent class. Leave Home is the second most
frequent class, and is also perfectly distinguished by the non-graph approach
(100% accuracy), as well as the third highest accuracy that the ensemble scored
on any category. Sleep is the hardest category to distinguish, followed by Night
Wandering (which produces particularly dissimilar graphs) and the three meals.

Figure 3 was generated using optimal parameters for each algorithm, for
each category. Frequent Subgraph SVM and non-graph SVM vary in perfor-
mance based on the RBF kernel parameter v and the SVM parameter C. Using
optimal parameters for each category, rather than a single set of parameters for
all categories, gives a fair assessment of the difficulty of each 2-class problem.

One vs One Comparison. The 2-class comparison of Figure 3 provides
a good indication of which categories are particularly easy or hard, but not
which categories they are easily mixed up with. Figure 4 addresses this problem.
The majority of pairs of activities can be distinguished with greater than 95%
accuracy (33 out of 45, or 73%). As expected, classes which resulted in high
accuracy in Figure 3 are not easily confused with any other class. For example,
Laundry can be distinguished from 9 out of 10 other classes with greater than
96% accuracy, the remaining category (bed to toilet) with 87% accuracy. Take
medicine, can be distinguished from every other category with 95% or greater
accuracy.

In the case of the three meals, the meals are well distinguished from non-
meal activities but not each other. Breakfast is traditionally defined as the first
meal of the day, and given this definition no machine learning is required at all
to differentiate it from other meals. Replacing all three meals with one generic
“meal” activity label results in 81.8% overall accuracy.

5 Conclusion

Representing time-based sensor data as a graph provides additional information
which is useful for classification. Although none of the graph-based algorithms
significantly outperformed the non-graph SVM, they provided uncorrelated er-
ror which demonstrates that the graph-based approach is capable of correctly
classifying graphs which cannot otherwise be classified correctly. Additionally,
the different graph approaches used in the ensemble (Frequent Subgraph SVM,
Graph Kernel SVM, and Nearest Neighbor) had uncorrelated error with each
other.

This is a useful result in terms of overall classification accuracy. The ensemble
gains 6.5% over the best classifier alone on the 10-class problem. It is also a
promising result. If three graph-based classifiers with uncorrelated error on this
problem exist, there may be others as well.



More work is needed to characterize when each classifier succeeds and fails.
A complete success in this area would increase accuracy by over 12%, simply by
correctly classifying the examples for which at least one classifier had the correct
solution.
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