# tinyobjloader [![Build Status](https://travis-ci.org/tinyobjloader/tinyobjloader.svg?branch=master)](https://travis-ci.org/tinyobjloader/tinyobjloader) [![AZ Build Status](https://dev.azure.com/tinyobjloader/tinyobjloader/_apis/build/status/tinyobjloader.tinyobjloader?branchName=master)](https://dev.azure.com/tinyobjloader/tinyobjloader/_build/latest?definitionId=1&branchName=master) [![AppVeyor Build status](https://ci.appveyor.com/api/projects/status/m6wfkvket7gth8wn/branch/master?svg=true)](https://ci.appveyor.com/project/syoyo/tinyobjloader-6e4qf/branch/master) [![Coverage Status](https://coveralls.io/repos/github/syoyo/tinyobjloader/badge.svg?branch=master)](https://coveralls.io/github/syoyo/tinyobjloader?branch=master) [![AUR version](https://img.shields.io/aur/version/tinyobjloader?logo=arch-linux)](https://aur.archlinux.org/packages/tinyobjloader) [![Download](https://api.bintray.com/packages/conan/conan-center/tinyobjloader%3A_/images/download.svg)](https://bintray.com/conan/conan-center/tinyobjloader%3A_/_latestVersion) (not recommended) Tiny but powerful single file wavefront obj loader written in C++03. No dependency except for C++ STL. It can parse over 10M polygons with moderate memory and time. `tinyobjloader` is good for embedding .obj loader to your (global illumination) renderer ;-) If you are looking for C89 version, please see https://github.com/syoyo/tinyobjloader-c . Notice! ------- We have released new version v1.0.0 on 20 Aug, 2016. Old version is available as `v0.9.x` branch https://github.com/syoyo/tinyobjloader/tree/v0.9.x ## What's new * 19 Feb, 2020 : The repository has been moved to https://github.com/tinyobjloader/tinyobjloader ! * 18 May, 2019 : Python binding!(See `python` folder. Also see https://pypi.org/project/tinyobjloader/) * 14 Apr, 2019 : Bump version v2.0.0 rc0. New C++ API and python bindings!(1.x API still exists for backward compatibility) * 20 Aug, 2016 : Bump version v1.0.0. New data structure and API! ## Requirements * C++03 compiler ### Old version Previous old version is available in `v0.9.x` branch. ## Example ![Rungholt](images/rungholt.jpg) tinyobjloader can successfully load 6M triangles Rungholt scene. http://casual-effects.com/data/index.html ![](images/sanmugel.png) * [examples/viewer/](examples/viewer) OpenGL .obj viewer * [examples/callback_api/](examples/callback_api/) Callback API example * [examples/voxelize/](examples/voxelize/) Voxelizer example ## Use case TinyObjLoader is successfully used in ... ### New version(v1.0.x) * Double precision support through `TINYOBJLOADER_USE_DOUBLE` thanks to noma * Loading models in Vulkan Tutorial https://vulkan-tutorial.com/Loading_models * .obj viewer with Metal https://github.com/middlefeng/NuoModelViewer/tree/master * Vulkan Cookbook https://github.com/PacktPublishing/Vulkan-Cookbook * cudabox: CUDA Solid Voxelizer Engine https://github.com/gaspardzoss/cudavox * Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems https://github.com/RobotLocomotion/drake * VFPR - a Vulkan Forward Plus Renderer : https://github.com/WindyDarian/Vulkan-Forward-Plus-Renderer * glslViewer: https://github.com/patriciogonzalezvivo/glslViewer * Lighthouse2: https://github.com/jbikker/lighthouse2 * rayrender(an open source R package for raytracing scenes in created in R): https://github.com/tylermorganwall/rayrender * liblava - A modern C++ and easy-to-use framework for the Vulkan API. [MIT]: https://github.com/liblava/liblava * rtxON - Simple Vulkan raytracing tutorials https://github.com/iOrange/rtxON * metal-ray-tracer - Writing ray-tracer using Metal Performance Shaders https://github.com/sergeyreznik/metal-ray-tracer https://sergeyreznik.github.io/metal-ray-tracer/index.html * Your project here! (Letting us know via github issue is welcome!) ### Old version(v0.9.x) * bullet3 https://github.com/erwincoumans/bullet3 * pbrt-v2 https://github.com/mmp/pbrt-v2 * OpenGL game engine development http://swarminglogic.com/jotting/2013_10_gamedev01 * mallie https://lighttransport.github.io/mallie * IBLBaker (Image Based Lighting Baker). http://www.derkreature.com/iblbaker/ * Stanford CS148 http://web.stanford.edu/class/cs148/assignments/assignment3.pdf * Awesome Bump http://awesomebump.besaba.com/about/ * sdlgl3-wavefront OpenGL .obj viewer https://github.com/chrisliebert/sdlgl3-wavefront * pbrt-v3 https://github.com/mmp/pbrt-v3 * cocos2d-x https://github.com/cocos2d/cocos2d-x/ * Android Vulkan demo https://github.com/SaschaWillems/Vulkan * voxelizer https://github.com/karimnaaji/voxelizer * Probulator https://github.com/kayru/Probulator * OptiX Prime baking https://github.com/nvpro-samples/optix_prime_baking * FireRays SDK https://github.com/GPUOpen-LibrariesAndSDKs/FireRays_SDK * parg, tiny C library of various graphics utilities and GL demos https://github.com/prideout/parg * Opengl unit of ChronoEngine https://github.com/projectchrono/chrono-opengl * Point Based Global Illumination on modern GPU https://pbgi.wordpress.com/code-source/ * Fast OBJ file importing and parsing in CUDA http://researchonline.jcu.edu.au/42515/1/2015.CVM.OBJCUDA.pdf * Sorted Shading for Uni-Directional Pathtracing by Joshua Bainbridge https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc15/02Josh/joshua_bainbridge_thesis.pdf * GeeXLab http://www.geeks3d.com/hacklab/20160531/geexlab-0-12-0-0-released-for-windows/ ## Features * Group(parse multiple group name) * Vertex * Vertex color(as an extension: https://blender.stackexchange.com/questions/31997/how-can-i-get-vertex-painted-obj-files-to-import-into-blender) * Texcoord * Normal * Material * Unknown material attributes are returned as key-value(value is string) map. * Crease tag('t'). This is OpenSubdiv specific(not in wavefront .obj specification) * PBR material extension for .MTL. Its proposed here: http://exocortex.com/blog/extending_wavefront_mtl_to_support_pbr * Callback API for custom loading. * Double precision support(for HPC application). * Smoothing group * Python binding : See `python` folder. * Precompiled binary(manylinux1-x86_64 only) is hosted at pypi https://pypi.org/project/tinyobjloader/) ### Primitives * [x] face(`f`) * [x] lines(`l`) * [ ] points(`p`) * [ ] curve * [ ] 2D curve * [ ] surface. * [ ] Free form curve/surfaces ## TODO * [ ] Fix obj_sticker example. * [ ] More unit test codes. * [x] Texture options ## License TinyObjLoader is licensed under MIT license. ### Third party licenses. * pybind11 : BSD-style license. ## Usage ### Installation One option is to simply copy the header file into your project and to make sure that `TINYOBJLOADER_IMPLEMENTATION` is defined exactly once. Tinyobjlaoder is also available as a [conan package](https://bintray.com/conan/conan-center/tinyobjloader%3A_/_latestVersion). Conan integrates with many build systems and lets you avoid manual dependency installation. Their [documentation](https://docs.conan.io/en/latest/getting_started.html) is a great starting point. ### Building tinyobjloader - Using vcpkg You can download and install tinyobjloader using the [vcpkg](https://github.com/Microsoft/vcpkg) dependency manager: git clone https://github.com/Microsoft/vcpkg.git cd vcpkg ./bootstrap-vcpkg.sh ./vcpkg integrate install ./vcpkg install tinyobjloader The tinyobjloader port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository. ### Data format `attrib_t` contains single and linear array of vertex data(position, normal and texcoord). ``` attrib_t::vertices => 3 floats per vertex v[0] v[1] v[2] v[3] v[n-1] +-----------+-----------+-----------+-----------+ +-----------+ | x | y | z | x | y | z | x | y | z | x | y | z | .... | x | y | z | +-----------+-----------+-----------+-----------+ +-----------+ attrib_t::normals => 3 floats per vertex n[0] n[1] n[2] n[3] n[n-1] +-----------+-----------+-----------+-----------+ +-----------+ | x | y | z | x | y | z | x | y | z | x | y | z | .... | x | y | z | +-----------+-----------+-----------+-----------+ +-----------+ attrib_t::texcoords => 2 floats per vertex t[0] t[1] t[2] t[3] t[n-1] +-----------+-----------+-----------+-----------+ +-----------+ | u | v | u | v | u | v | u | v | .... | u | v | +-----------+-----------+-----------+-----------+ +-----------+ attrib_t::colors => 3 floats per vertex(vertex color. optional) c[0] c[1] c[2] c[3] c[n-1] +-----------+-----------+-----------+-----------+ +-----------+ | x | y | z | x | y | z | x | y | z | x | y | z | .... | x | y | z | +-----------+-----------+-----------+-----------+ +-----------+ ``` Each `shape_t::mesh_t` does not contain vertex data but contains array index to `attrib_t`. See `loader_example.cc` for more details. ``` mesh_t::indices => array of vertex indices. +----+----+----+----+----+----+----+----+----+----+ +--------+ | i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7 | i8 | i9 | ... | i(n-1) | +----+----+----+----+----+----+----+----+----+----+ +--------+ Each index has an array index to attrib_t::vertices, attrib_t::normals and attrib_t::texcoords. mesh_t::num_face_vertices => array of the number of vertices per face(e.g. 3 = triangle, 4 = quad , 5 or more = N-gons). +---+---+---+ +---+ | 3 | 4 | 3 | ...... | 3 | +---+---+---+ +---+ | | | | | | | +-----------------------------------------+ | | | | | | +------------------------------+ | | | | | | +------------------+ | | | | | | |/ |/ |/ |/ mesh_t::indices | face[0] | face[1] | face[2] | | face[n-1] | +----+----+----+----+----+----+----+----+----+----+ +--------+--------+--------+ | i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7 | i8 | i9 | ... | i(n-3) | i(n-2) | i(n-1) | +----+----+----+----+----+----+----+----+----+----+ +--------+--------+--------+ ``` Note that when `triangulate` flag is true in `tinyobj::LoadObj()` argument, `num_face_vertices` are all filled with 3(triangle). ### float data type TinyObjLoader now use `real_t` for floating point data type. Default is `float(32bit)`. You can enable `double(64bit)` precision by using `TINYOBJLOADER_USE_DOUBLE` define. #### Example code ```c++ #define TINYOBJLOADER_IMPLEMENTATION // define this in only *one* .cc #include "tiny_obj_loader.h" std::string inputfile = "cornell_box.obj"; tinyobj::attrib_t attrib; std::vector shapes; std::vector materials; std::string warn; std::string err; bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, inputfile.c_str()); if (!warn.empty()) { std::cout << warn << std::endl; } if (!err.empty()) { std::cerr << err << std::endl; } if (!ret) { exit(1); } // Loop over shapes for (size_t s = 0; s < shapes.size(); s++) { // Loop over faces(polygon) size_t index_offset = 0; for (size_t f = 0; f < shapes[s].mesh.num_face_vertices.size(); f++) { int fv = shapes[s].mesh.num_face_vertices[f]; // Loop over vertices in the face. for (size_t v = 0; v < fv; v++) { // access to vertex tinyobj::index_t idx = shapes[s].mesh.indices[index_offset + v]; tinyobj::real_t vx = attrib.vertices[3*idx.vertex_index+0]; tinyobj::real_t vy = attrib.vertices[3*idx.vertex_index+1]; tinyobj::real_t vz = attrib.vertices[3*idx.vertex_index+2]; tinyobj::real_t nx = attrib.normals[3*idx.normal_index+0]; tinyobj::real_t ny = attrib.normals[3*idx.normal_index+1]; tinyobj::real_t nz = attrib.normals[3*idx.normal_index+2]; tinyobj::real_t tx = attrib.texcoords[2*idx.texcoord_index+0]; tinyobj::real_t ty = attrib.texcoords[2*idx.texcoord_index+1]; // Optional: vertex colors // tinyobj::real_t red = attrib.colors[3*idx.vertex_index+0]; // tinyobj::real_t green = attrib.colors[3*idx.vertex_index+1]; // tinyobj::real_t blue = attrib.colors[3*idx.vertex_index+2]; } index_offset += fv; // per-face material shapes[s].mesh.material_ids[f]; } } ``` ## Optimized loader Optimized multi-threaded .obj loader is available at `experimental/` directory. If you want absolute performance to load .obj data, this optimized loader will fit your purpose. Note that the optimized loader uses C++11 thread and it does less error checks but may work most .obj data. Here is some benchmark result. Time are measured on MacBook 12(Early 2016, Core m5 1.2GHz). * Rungholt scene(6M triangles) * old version(v0.9.x): 15500 msecs. * baseline(v1.0.x): 6800 msecs(2.3x faster than old version) * optimised: 1500 msecs(10x faster than old version, 4.5x faster than baseline) ## Python binding ### CI + PyPI upload cibuildwheels + twine upload for each git tagging event is handled in Azure Pipeline. #### How to bump version(For developer) * Bump version in CMakeLists.txt * Update version in `python/setup.py` * Commit with tag name starging with `v`(e.g. `v2.1.0`) * `git push --tags` * cibuildwheels + pypi upload(through twine) will be automatically triggered in Azure Pipeline. ## Tests Unit tests are provided in `tests` directory. See `tests/README.md` for details.