Tree Balance

Seth Long

February 8, 2010

Types of Balanced Trees
Types of Balanced Trees
AVL Trees
Preliminaries
Remove Insert
Examples for each case
Splay Trees
Preliminaries
Splay Tree Solutions
Removal from Splay Trees
B Trees
Why a B Tree?
Preliminaries
Insertion
Deletion
Summary of B Trees

Balanced BSTs

- AVL Trees
- Height of left and right subtrees at every node differ by at most 1
- Maintained via rotations
- Depth always $O\left(\log _{2} N\right)$
- Named after Adelson-Velskii and Landis (in 1962)
- Splay Trees
- After a node is accessed, it moves to the root
- Average depth per operation is $O\left(\log _{2} N\right)$

AVL Trees

- Minimum nodes in an AVL tree of height h :
- $\mathrm{S}(\mathrm{h})=\mathrm{S}(\mathrm{h}-1)+\mathrm{S}(\mathrm{h}-2)+1$
- Kinda like Fibonacci, but not quite
- AVL trees?

Remove

- Lazy Deletion!
- Removed nodes are marked as deleted, but NOT removed
- If same object is re-inserted, these are undeleted
- Does not affect $O\left(\log _{2} N\right)$ height as long as deleted nodes are not in the majority
- If too many, remove all and re-balance

Insert

- Can break balance
- Can fix via rotation. Example inserting 6:

Insert Cont.

- Only nodes along path to insertion have balance altered.
- Fix violations along path back to root
- Two types of rotation: Single and Double
- Single was on previous slide
- Double involves moving a node up two levels
- Given an unbalanced node, re-balance can be required because of insertion int:

1. left subtree of the left child
2. right subtree of left child
3. left subtree of right child
4. right subtree of right child

- Cases 1 and 4 require single rotation
- Cases 2 and 3 require double

Types of Balanced Trees

Preliminaries
Remove
Insert
Examples for each case

Case 1: Single rotation right

k_{2} is unbalanced

Types of Balanced Trees

Preliminaries
Remove
Insert
Examples for each case

Case 4 example

Types of Balanced Trees

Case 2: Single Rotation Fails

Case 2: Left-Right Double rotation

Preliminaries
Remove
Insert
Examples for each case

Case 3: Right-Left Double rotation

Preliminaries

- Accessed nodes are pushed to root via AVL rotations
- Any M consecutive operations take at most $O\left(M \log _{2} N\right)$ time
- Cost per operation is on average $O\left(\log _{2} N\right)$
- Some operations take $O(n)$ time
- Does not require maintaining height or balance information!

Solution 1

- Perform single rotations with accessed/new node and parent until accessed/new node is the root
- Problem:
- Pushes current root node deep into tree
- In general, can result in $O(M * N)$ time for M operations
- Example: Insert 1, 2, 3, ..., N
- Then access 1
- ...and then n , and then 1 ...

Solution 2

- Still rotate on path from new/accessed node to root
- But, use more selective rotations.
- Still swap with root if root is parent of new/accessed node
- Use double rotation in this situation:

Zig-Zag

- If node X is left child of parent, which is left child of grandparent
- Do double rotation like this:

Previous "bad" example

- The tree from inserting $1 \ldots 7$, when 1 is accessed, given the new rotation methods:

Removal from Splay Trees

- Access node to be removed (moves it to the root)
- Remove node, leaving subtrees T_{L} and T_{R}
- Access largest element in T_{L}
- Note that this does not have a right child
- Make T_{R} the right child of T_{L}

Why a B Tree?

- Many databases are very large! Some examples:
- Google
- Amazon and other online marketers
- Netflix (user ratings)
- Filesystems
- Google might have 33 trillion items. Access time for BST:
- $h=\log _{2} 33 * 10^{12}=44.9$
- Assume 120 disk accesses per second (8.3 millisecond seek time)
- Each search takes .37 seconds, assuming exclusive use of storage

Reducing Disk Accesses

- Use a 3-way search tree
- Each node stores 2 keys, has at most 3 children
- Each level has $2 I^{3}$ nodes, where I is the height of the level
- Like this:

M-ary trees

- Each node access gets $\mathrm{M}-1$ keys and M children
- Choose M so that one node is stored in one disk page
- Yes, this is dependant on how hard drives work.
- Height of tree: $\log _{M} N$
- Example: Assume 8192 byte page, 32 bytes per key, 4 bytes per pointer.
- $32(M-1)+4 M=8192$
- Solving the above, $\mathrm{M}=228$
- Google example again: $\log _{228} 33 * 10^{12}=5.7$ disk accesses
- Using values from before, 0.047 seconds per query

B Trees

- M-ary tree where:
- Data items are stored at the leaves
- Non-leaf nodes store up to M-1 keys
- Key i represents the smallest key in subtree $\mathrm{i}+1$
- Basically, no data is stored in non-leaf nodes
- Root node is either a leaf, or has between 2 and M children
- Non-leaf non-root nodes have between $\left\lceil\frac{M}{2}\right\rceil$ and M children
- All leaves are at the same depth and have between $\left\lceil\frac{L}{2}\right\rceil$ and L data items
- Requiring at least half full nodes avoids degenerating into binary tree
- Example of choosing L:
- Assume a data element requires 256 bytes
- Leaf node capacity of 8192 bytes implies $\mathrm{L}=32$
- Each node has between 16 and 32 elements

B Tree

- B tree of order $5(M=5)$
- Node has 2-4 keys and 3-5 children
- Leaves have 3-5 data elements

Types of Balanced Trees
AVL Trees
Splay Trees
B Trees

Insertion into Non-Full Leaf

- Insert 57 into previous order 5 tree

Insertion into full leaf with non-full parent

- Split leaf and promote middle element to parent
- Example: Insert 55 into previous example

Insertion into full leaf with full parent

- Split parent, promote parent's middle element to grandparent
- Continue until non-full parent or split root
- Example: Insert 40 into previous example. Then 43 and 45?

Types of Balanced Trees
AVL Trees
Splay Trees
B Trees

Leaf node not at minimum

- Easy case: Just delete it!
- Example: Remove 16 from previous example

Leaf node at minimum, but not neighbor

- Adopt an element from the neighbor
- Example: Remove 6 from previous example

Further borrowing from the neighbors

- Merge with neighbor, borrow at higher level
- Go as far up the tree as needed
- Example: Remove 99 from previous example

Summary of B Trees

- Optimized for large numbers of items and secondary storage
- Works on:
- Hard drives
- Network storage
- Clusters
- Any high-latency storage
- M-ary tree with height $\log _{M} N$
- Used for many real databases, and ReiserFS

