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Types of Balanced Trees

Balanced BSTs

I AVL Trees
I Height of left and right subtrees at every node differ by at

most 1
I Maintained via rotations
I Depth always O(log2 N)
I Named after Adelson-Velskii and Landis (in 1962)

I Splay Trees
I After a node is accessed, it moves to the root
I Average depth per operation is O(log2 N)
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AVL Trees

I Minimum nodes in an AVL tree of height h:
I S(h) = S(h-1) + S(h-2) + 1
I Kinda like Fibonacci, but not quite

I AVL trees?
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Remove

I Lazy Deletion!
I Removed nodes are marked as deleted, but NOT removed
I If same object is re-inserted, these are undeleted
I Does not affect O(log2 N) height as long as deleted nodes are

not in the majority
I If too many, remove all and re-balance
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Insert

I Can break balance

I Can fix via rotation. Example inserting 6:
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Insert Cont.

I Only nodes along path to insertion have balance altered.

I Fix violations along path back to root

I Two types of rotation: Single and Double

I Single was on previous slide

I Double involves moving a node up two levels
I Given an unbalanced node, re-balance can be required

because of insertion int:
1. left subtree of the left child
2. right subtree of left child
3. left subtree of right child
4. right subtree of right child

I Cases 1 and 4 require single rotation

I Cases 2 and 3 require double
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Case 1: Single rotation right

k2 is unbalanced
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Case 4 example
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Case 2: Single Rotation Fails
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Case 2: Left-Right Double rotation
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Case 3: Right-Left Double rotation
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Preliminaries

I Accessed nodes are pushed to root via AVL rotations

I Any M consecutive operations take at most O(M log2 N) time

I Cost per operation is on average O(log2 N)

I Some operations take O(n) time

I Does not require maintaining height or balance information!
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Solution 1

I Perform single rotations with accessed/new node and parent
until accessed/new node is the root

I Problem:
I Pushes current root node deep into tree
I In general, can result in O(M ∗ N) time for M operations
I Example: Insert 1, 2, 3, ..., N
I Then access 1
I ...and then n, and then 1...
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Solution 2

I Still rotate on path from new/accessed node to root

I But, use more selective rotations.

I Still swap with root if root is parent of new/accessed node

I Use double rotation in this situation:
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Zig-Zag

I If node X is left child of parent, which is left child of
grandparent

I Do double rotation like this:
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Previous “bad” example

I The tree from inserting 1...7, when 1 is accessed, given the
new rotation methods:
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Removal from Splay Trees

I Access node to be removed (moves it to the root)

I Remove node, leaving subtrees TL and TR

I Access largest element in TL

I Note that this does not have a right child

I Make TR the right child of TL
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Why a B Tree?

I Many databases are very large! Some examples:
I Google
I Amazon and other online marketers
I Netflix (user ratings)
I Filesystems

I Google might have 33 trillion items. Access time for BST:
I h = log2 33 ∗ 1012 = 44.9
I Assume 120 disk accesses per second (8.3 millisecond seek

time)
I Each search takes .37 seconds, assuming exclusive use of

storage
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Reducing Disk Accesses

I Use a 3-way search tree

I Each node stores 2 keys, has at most 3 children

I Each level has 2l3 nodes, where l is the height of the level

I Like this:
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M-ary trees

I Each node access gets M-1 keys and M children
I Choose M so that one node is stored in one disk page

I Yes, this is dependant on how hard drives work.

I Height of tree: logM N

I Example: Assume 8192 byte page, 32 bytes per key, 4 bytes
per pointer.

I 32(M − 1) + 4M = 8192

I Solving the above, M = 228

I Google example again: log228 33 ∗ 1012 = 5.7 disk accesses

I Using values from before, 0.047 seconds per query
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B Trees

I M-ary tree where:
I Data items are stored at the leaves
I Non-leaf nodes store up to M-1 keys

I Key i represents the smallest key in subtree i+1
I Basically, no data is stored in non-leaf nodes

I Root node is either a leaf, or has between 2 and M children
I Non-leaf non-root nodes have between dM

2 e and M children
I All leaves are at the same depth and have between dL

2 e and L
data items

I Requiring at least half full nodes avoids degenerating into
binary tree

I Example of choosing L:
I Assume a data element requires 256 bytes
I Leaf node capacity of 8192 bytes implies L=32
I Each node has between 16 and 32 elements

Seth Long Tree Balance



Types of Balanced Trees
AVL Trees

Splay Trees
B Trees

Why a B Tree?
Preliminaries
Insertion
Deletion
Summary of B Trees

B Tree

I B tree of order 5 (M = 5)
I Node has 2-4 keys and 3-5 children
I Leaves have 3-5 data elements
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Insertion into Non-Full Leaf

I Insert 57 into previous order 5 tree
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Insertion into full leaf with non-full parent

I Split leaf and promote middle element to parent

I Example: Insert 55 into previous example
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Insertion into full leaf with full parent

I Split parent, promote parent’s middle element to grandparent

I Continue until non-full parent or split root

I Example: Insert 40 into previous example. Then 43 and 45?
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Leaf node not at minimum

I Easy case: Just delete it!

I Example: Remove 16 from previous example
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Leaf node at minimum, but not neighbor

I Adopt an element from the neighbor

I Example: Remove 6 from previous example
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Further borrowing from the neighbors

I Merge with neighbor, borrow at higher level

I Go as far up the tree as needed

I Example: Remove 99 from previous example

Seth Long Tree Balance



Types of Balanced Trees
AVL Trees

Splay Trees
B Trees

Why a B Tree?
Preliminaries
Insertion
Deletion
Summary of B Trees

Summary of B Trees

I Optimized for large numbers of items and secondary storage
I Works on:

I Hard drives
I Network storage
I Clusters
I Any high-latency storage

I M-ary tree with height logM N

I Used for many real databases, and ReiserFS
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