

ZombieLoad

Toby Nelson

Exploit Discovered and Published
● In May 2019, an international team of

researches published a disclosure and report
detailing a new hyperthreading attack:

https://zombieloadattack.com/zombieload.pdf

Introduction (Microarchitecture)
● Modern CPUs will often complete instructions out of order (for

example branch prediction, or computing unrelated values
while waiting on a cache miss)

● To achieve this, instructions are executed until an exception is
raised, after which the cpu rolls back all following instructions.

● There were traditionally little security consideration over this
as it was not considered a useful attack vector prior to
Meltdown

Intro (Microarchitecture)
● One microarchitecture optimization is to complete

independent instructions following a load while you wait for
the load to come back from a cache miss.

● To accomplish this, modern Intel cpus use a load and store
buffer, collectively, the memory order buffer, as well as a
line fill buffer where retrieved or stored values are cached.

● The line fill buffer is never intended to be accessible
outside the cpu.

A Data Load
● When a load operation is dispatched, an entry is

created in the load buffer and the reorder buffer.
● From the linear address provided by the CPU,

the upper 36 bits are handed off to the MMU to
translate to physical memory address. The lower
12 bits just index the cache set.

36 bits are
handed to

the mmu to
retrieve the

physical
address,

when
retrieved

from TLB it is
immediate,
otherwise
the page

table must
be walked.

https://en.wikipedia.org/wiki/Memory_management_unit#/media/File:MMU_principle_updated.png

A Cache Miss:
● When the physical location is found, if it is not in l1

cache, the load buffer entry remains, and a fill-buffer
reservation is made. When the data returns to the fill
buffer, the load buffer and fill buffer entries can be
cleared.

● Further, if there is a store that does not reference an l1
value, it is also stored in fill-buffer and gains an entry in
store buffer.

Hypothesized Source of the Leak
● When the load instruction encounters a fault, a microcode assist flushes the

instruction pipeline
● This flush allows all pending instructions to complete
● The researchers hypothesize that to avoid slowdown during faults, the

instructions are allowed to match fill buffer entries with only a partial match
to the physical address. This can result to load operations being completed
with stale entries. Thus, they speculate the fault is not architectural (i.e. it is
possibly to build a hyperthreaded cpu without this leak) but implementation
specific.

● The fill buffer is shared among both logical cores of a hyperthreaded core

Microarchitectural Data Sampling
● Because the attack is believed to rely on stale

cache lines sitting in the fill buffer, the only
control the attacker has is the byte offset in the
cache line (functionally a 6 bit address)

https://
zombieloadattack.com/
zombieload.pdf

MDS (cont)
● Due to the limited targeting capabilities, ZombieLoad can be seen as a more

traditional side-channel attack vector compared to Meltdown-style attacks. The
attacker can read values and track the time, but they must find a way to relate
those to secret values.

● For example, the researchers were able to extract secret keys from a ‘side-
channel resistant’ AES implementation in OpenSSL 3.0. To accomplish this, they
monitored a cache line they knew the implementation would set, which does not
leak secrets directly but helps to synchronize the attack. Repeated instances of
the attack are necessary to control for noise and imprecision in this process. In
implementations where there are not measurable signals near the sensitive
information, more sophisticated methods using timestamps may be necessary.

Vulnerability
● At the date of publication, the

researchers described three variants:
– Variant 1 : This relies on being able to

associate a kernel address with a
userspace address. One method has
been addressed in the Linux kernel
4.15 and backported to 4.4.110, called
Kernel Page Table isolation. When the
attacker is privileged, both linux and
windows are vulnerable to this attack. If
they are not, only versions of linux
without KPTI available/enabled are
vulnerable.

https://github.com/IAIK/ZombieLoad/
blob/master/attacker/variant1_linux/
cacheutils.h

Vulnerability (cont)
● The variant the researchers dubbed Variant 2,

relies on an instruction set called Intel TSX which
is an extension supported by recent Intel CPUs.
This variant does not require privilege and works
across platforms, but it only leaks the bytes
corresponding the the load/store command which
left behind the address, not the entire cache line.

Vulnerability (cont)
● Finally, for variant 3, the access bits of files can be cleared to

trigger a microcode which leaks the data. For Linux, this exploit
requires privilege escalation, but at the time of publication the
researchers found Windows seemed to do this periodically
automatically meaning no elevation of privilege was necessary.

https://
zombieloadattack.com/
zombieload.pd

Suggested Countermeasures
● “Co-Scheduling” : The scheduler could ensure

processes running in a kernel context do not
share a physical core with processes running in
a userspace context. Similar measures would
be applied for virtual machine vs host machine
and user vs user

Countermeasures (cont).
● Flushing Buffers: This is covered to an extent under

existing mitigations for other microarchitecture
attacks. Processors with updated microcode only leak
~0.1b/s (provided the necessary instruction is called).
However, alternatives for cpus which have not
updated microcode must rely on code sequences
which are not reliable, for example the the i7 8650
was found to still be vulnerable with this mitigation.

Countermeasures (cont)
● For software, loading a secret directly from

memory should be avoided. If it is loaded in
separate parts and combined in registers, it
makes it less likely for the attacker to recover
and distinguish the complete secret from noise.

Countermeasures (cont).
● Selective Feature Deactivation: The variants

relied on features such as Intel TSX instruction
set extension, ensuring access bits are always
set properly by the Kernel, and disabling
virtualization in the bios so an attacker can not
create a virtual machine for easy access to a
kernel-user page alias.

Aftermath
● Intel described the exploit as ‘low to medium severity’ as ‘Exploiting the MDS vulnerabilities outside the

controlled conditions of a research environment is a complex undertaking.’
● The researchers later responded:

‘On January 27th, 2020, an embargo ended showing that the mitigations against MDS attacks released
in May 2019 are insufficient. With L1D Eviction Sampling, an attacker can still mount ZombieLoad to leak
data that is being evicted from the L1D cache.

We disclosed this issue to Intel on May 16th, 2019. However, as microcode updates containing the
necessary fixes are not yet available, we are not releasing any proof-of-concept code.’

● This seems to be referring to the 0.1b/s leak they described after microcode updates are applied and
used. ‘We can still observe leakage from kernel values accessed on the same logical core. However, the
leakage rate drops from multiple kilobytes per second to less than 0.1 B/s. Our hypothesis is that we can
leak data which is evicted from L1 to L2 after issuing the VERW instruction. As the VERW instruction
does not flush dirty L1-cache lines, these can be easily leaked if the attacker partly evicts the L1.’

Aftermath(cont)
● In an email to Wired in 2020, Cristiano Giuffrida, one of the

researchers to discover an a closely related microarchitecture data
sampling attack, RIDL, had this to say "These issues aren't trivial to
fix. But after eighteen months, they're still waiting for researchers to
put together proofs-of-concept of every small variation of the attack
for them? It’s amazing. We don’t know the inner workings of Intel's
team. But it’s not a good look from the outside."

● I did not find any articles discussing real events of ZombieLoad
being used in a black hat context.

References
● https://zombieloadattack.com/zombieload.pdf
● https://www.intel.com/content/www/us/en/

architecture-and-technology/mds.html
● https://zombieloadattack.com/#faq
● https://www.wired.com/story/intel-zombieload-

third-patch-speculative-execution/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

